zur Hauptnavigation springen zum Inhaltsbereich springen

BayWISS-Kolleg Mobilität & Verkehr www.baywiss.de

Projekte im Kolleg Mobilität und Verkehr

© chuttersnap / unsplash.com

Hybrid Statistical Learning Methods for Embedded Implementation of Vehicle Safety Functions (HySLEUS)

Statistical learning methods offer the possibility of finding a solution for many practical problems with low computational resources. However, they are seen as a “Black-Box” as they are pure data-based methods. This is the reason why statistical learning methods have so far not been used for safety-critical applications. Hybrid statistical learning methods, which are combinations of data-based methods and physical models, open a new way to work around the disadvantages of pure data-based methods while exploiting their advantages for vehicle safety algorithms.

The main scientific aim of the project is the exploration of hybrid statistical learning methods for vehicle safety algorithms and their implementation. The basic idea of the planned combination is a search of an approximate solution with statistical learning methods and finding a final solution with physical models.  Hereby, ‘safety’ and ‘low computational resources’ are the two evaluation criteria defined for the developed methods. 

As a primary application in the vehicle active safety field, the challenging task of safe trajectory planning in critical traffic-scenarios is considered. Two variants of analytical sampling-based algorithms, ‘Augmented CL-RRT’ and ‘Augmented CL-RRT+’, are developed for safe trajectory planning with dynamic constraints in critical traffic-scenarios with multiple static and dynamic objects. The predicted severity of collision is also considered for trajectory selection in case a collision-free trajectory is not found. These algorithms are combined with a machine learning algorithm (3D Convolutional Neural Network, Variational Autoencoders) to increase the convergence rate.


A. Chaulwar, M. Botsch, T. Krueger und T. Miehling, “Planning of safe trajectories in dynamic multi-object traffic-scenarios”, Journal of Traffic and Logistics Engineering, Vol.4, no.2, 2016

A. Chaulwar, M. Botsch, W. Utschick, “A Hybrid Machine Learning Approach for Planning Safe Trajectories in Complex Traffic-Scenarios”, IEEE International Conference on Machine Learning and Applications, 2016

A. Chaulwar, M. Botsch, W. Utschick, “A Machine Learning based Biased-Sampling Approach for Planning Safe Trajectories in Complex, Dynamic Traffic-Scenarios”, IEEE Intelligent Vehicles Symposium, 2017

A. Chaulwar, M. Botsch, and W. Utschick, “Generation of Reference Trajectories for Safe Trajectory Planning”, International Conference on Artificial Neural Networks, 2018.

A. Chaulwar, H. Al-Hashimi, M. Botsch, W. Utschick, “Efficient Hybrid Machine Learning Algorithm for Trajectory Planning in Critical Traffic-Scenarios”, accepted for Int. Conf. of Intelligent Transportation Engineering, 2019.



Dr. Amit Chaulwar

Amit Chaulwar

Technische Hochschule Ingolstadt

Koordination des Verbundkollegs Mobilität und Verkehr

Treten Sie mit uns in Kontakt. Wir freuen uns auf Ihre Fragen und Anregungen zum Verbundkolleg Mobilität und Verkehr.

Judith Demharter

Judith Demharter

Technische Hochschule Ingolstadt
Esplanade 10
85049 Ingolstadt

Telefon: +49 841 93483789