zur Hauptnavigation springen zum Inhaltsbereich springen

BayWISS-Kolleg Mobility and Transport www.baywiss.de

PhD-Projects in the Joint Academic Partnership Mobilität und Verkehr

Fail operational software components in heterogeneous automotive real time systems

Autonomous driving is one of the leading trends in the automotive industry. Therefore, Electronic Control Units (ECUs) must execute ever more and more complex driver assistance systems. This increasing degree of automatization leads at the same time to a growing demand for high availability of critical functionalities since the human driver is no more available as a backup layer in case of a failure. In addition, new tasks for example from entertainment find their way into cars and must be executed. As those tasks have a different criticality in terms of safety, the whole system becomes a mixed criticality system.

This project investigates flexible and resource efficient fail operational concepts for component-based software architectures in heterogeneous hardware environments. In case of a fault in an executing entity, software components including critical functionalities should be executed on another entity, even though this entity might be based on a completely different hardware or software architecture. This topic will be investigated for the AUTOSAR Classic and Adaptive software architectures and ECUs based on either microcontrollers or microprocessors.

The main topics under investigation for this project are therefore:

  • failure handling strategies, including fault detection, maintenance of critical functionalities, real-time readiness of the fault reaction and data consistency of the primary and backed up functionality,
  • virtualization concepts for temporal and spatial separation of a mixed criticality system and
  • the interchangeability of Software between different hardware architectures like microprocessors and microcontrollers and different software architectures like AUTOSAR Adaptive and AUTOSAR Classic.

This work is funded by: Vitesco Technologies Group AG



Supervisor Technische Hochschule Ingolstadt:

Prof. Dr. Ulrich Margull


  • Echtzeitsysteme im Automobilbereich
  • Zuverlässige eingebettete Systeme mit parallelen heterogenen Rechnerarchitekturen

Fail operational software components in heterogeneous automotive real time systems

Supervisor Friedrich-Alexander-Universität Erlangen-Nürnberg:

Prof. Dr.-Ing. Dietmar Fey

Chair of Computer Science 3 (Hardware Architectures)

Department of Computer Science

Friedrich Alexander Universität Erlangen


Schwerpunkte des Lehrstuhls:

  • Application specific architectures for embedded systems
  • Multi-cluster and many-core for heterogenous HPC
  • Nano-computing


Johannes Lex

Johannes Lex

Technische Hochschule Ingolstadt

Publikationen und Poster


Johannes Lex, Prof. Dr. Ulrich Margull, Prof. Dr. Dietmar Fey, Ralph Mader, 12/2022, A hypervisor-based fault tolerant strategy for heterogeneous real-time systems, Sindelfingen, Embedded Systems Engineering Congress 2022

Lex, J., Margull, U., Fey, D., Mader, R., 11/2021 Fault tolerance in heterogeneous automotive real-time systems. Nov. 11-12, Real Time Conference 2021, Boppard am Rhein, peer-reviewed


Get in touch. We look forward to your questions and ideas for our Joint Academic Partnership Mobility and Transportation.

Judith Demharter

Judith Demharter

Technische Hochschule Ingolstadt
Esplanade 10
85049 Ingolstadt

Telephone: +49 841 93483789